Problems and Discussion of the Inverse Laplace Transform - 1

Finding <mjx-container class="MathJax CtxtMenu_Attached_0" jax="CHTML" tabindex="0" ctxtmenu_counter="0" style="font-size: 113.1%; position: relative;"><mjx-math class="MJX-TEX" aria-hidden="true"><mjx-mi class="mjx-i"><mjx-c class="mjx-c210E TEX-I"></mjx-c></mjx-mi><mjx-mo class="mjx-n"><mjx-c class="mjx-c28"></mjx-c></mjx-mo><mjx-mi class="mjx-i"><mjx-c class="mjx-c1D461 TEX-I"></mjx-c></mjx-mi><mjx-mo class="mjx-n"><mjx-c class="mjx-c29"></mjx-c></mjx-mo></mjx-math><mjx-assistive-mml unselectable="on" display="inline"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></math></mjx-assistive-mml></mjx-container> from Transfer Function <mjx-container class="MathJax CtxtMenu_Attached_0" jax="CHTML" tabindex="0" ctxtmenu_counter="1" style="font-size: 113.1%; position: relative;"><mjx-math class="MJX-TEX" aria-hidden="true"><mjx-mi class="mjx-i"><mjx-c class="mjx-c1D43B TEX-I"></mjx-c></mjx-mi><mjx-mo class="mjx-n"><mjx-c class="mjx-c28"></mjx-c></mjx-mo><mjx-mi class="mjx-i"><mjx-c class="mjx-c1D460 TEX-I"></mjx-c></mjx-mi><mjx-mo class="mjx-n"><mjx-c class="mjx-c29"></mjx-c></mjx-mo></mjx-math><mjx-assistive-mml unselectable="on" display="inline"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></math></mjx-assistive-mml></mjx-container>

Find h(t) from H(s)=s2s3+4s2+4s

Discussion:

We need to perform the inverse Laplace transform. Here are the steps to follow to obtain h(t) from the transfer function H(s):

Step 1: Factorize the denominator of H(s)

H(s)=s2s3+4s2+4s=s2s(s2+4s+4)=s2s(s+2)2

Step 2: Convert the fraction into a simpler partial fraction form for easier inversion

H(s)=s2s(s+2)2=As+Bs+2+C(s+2)2

s2=A(s+2)2+Bs(s+2)+Cs

s2=As2+4As+4A+Bs2+2Bs+Cs

s2=(A+B)s2+(4A+2B+C)s+4A

Step 3: Determine the Coefficients

s2=(A+B)s2+(4A+2B+C)s+4A

By comparing coefficients, we get:

  • 1=A+B
  • 0=4A+2B+C
  • 0=4AA=0

From 1=A+B, we get 1=0+BB=1

From 0=4A+2B+C, we get 0=0+21+C0=2+CC=2

Step 4: Partial Fractions

Substitute A=0, B=1, and C=2 into H(s):

H(s)=s2s(s+2)2=0s+1s+2+2(s+2)2

H(s)=1s+22(s+2)2

Step 5: Inverse Laplace Transform

H(s)=1s+22(s+2)2

L1{1(s+2)}=e2t

L1{1(s+2)2}=te2t

Thus:

h(t)=e2t2te2t

Graph:h(t)=e2t2te2t
 [05220240602]

Comments

Popular posts from this blog

Prevention of Pneumonia: Understanding the Causes and Risk Factors for Lung Health and Family Well-being